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Introduction
The oral cavity extends from the vermilion border of 
the lips to the superior junction of the hard and soft 
palates, as well as the inferior circumvallate papillae of the 
tongue.1 The lip, oral tongue, floor of the mouth, buccal 
mucosa, upper and lower gums, retromolar trigone, and 
hard palate are the anatomical subsites that together 
comprise the oral cavity. Despite their proximity, these 
subsites have unique anatomical features that should be 
taken into account when designing oncologic therapy.2 
The fifth decade of life is when oral cancer usually 
manifests itself in most men. About 1.5% of individuals 
will experience another synchronous primary in the 
lung, esophagus, or oral cavity of the aero-digestive 
tract. Nearly 10%–40% of metachronous cancers arise 
in the first ten years after the treatment of the index 
primary.3,4 Regular post-therapy surveillance and lifestyle 
adjustments are therefore crucial secondary preventive 
measures. Squamous cell carcinomas account for more 
than 90% of all oral cancer cases. Other malignant tumors 
can also arise from the epithelium, connective tissue, 

small salivary glands, lymphoid tissue, melanocytes, and 
metastasis of a distant tumor. Numerous premalignant 
lesions have been connected to squamous cell carcinoma 
(SCC). Among the most common premalignant lesions, 
leukoplakia, erythroplakia, oral lichen planus, and oral 
submucous fibrosis all have different degrees of risk for 
developing into malignant transformation 5. Based on the 
degree of dysplasia, premalignant lesions are classified 
as carcinoma in situ, mild, moderate, severe, and severe, 
according to the World Health Organization.

T Cell Activation and Regulation
Signals that are produced when the T cell receptor identifies 
the major histocompatibility complex (MHC) antigen are 
responsible for T cell activation. As stimulatory factors, 
the B molecule on the surface of the antigen-presenting 
cell (APC) and the CD28 molecule on the surface of the 
T cell carry out these signals. Checkpoints both centrally 
and peripherally control T lymphocytes. Bidirectional 
T cell activation generates an inhibitory pathway that 
ultimately reduces the potency of the T cell response.6
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Abstract
Oral malignancies are responsible for a considerable portion of cancer-related deaths 
worldwide. Even though survival rates have increased recently, new treatments are being 
explored to slow the advancement of the disease and enhance outcomes, especially in cases 
of oral cavity squamous cell carcinoma (OSCC) and oral potentially malignant diseases 
(OPMDs). Immunotherapy is a novel therapeutic approach that targets immune checkpoint 
molecules such as programmed cell death protein-1 (PD-1) and its ligand programmed death-
ligand 1 (PD-L1), cytotoxic T-lymphocyte antigen 4, lymphocyte-activated gene 3, and T cell 
immunoglobulin mucin 3 in order to enhance the host’s immune response against malignancies 
and impede the growth and metastasis of cancer cells. Accordingly, a systematic review was 
performed by scanning five databases for keywords related to immune checkpoint inhibitors, 
along with oral malignancies, oral pathologies, and OPMDs, in order to describe the current 
state of their use and efficacy in these disorders. For this purpose, 644 unique publications 
published between 2004 and 2019 were found, 76 of which were judged to be appropriate 
for the study and produced 8826 samples. PD-1 and PD-L1 are expressed in most OPMD 
and OSCC samples, and their expression is associated with worse survival rates and greater 
rates of progression. Two immunotherapy drugs targeting PD-1, namely, pembrolizumab and 
nivolumab, have been demonstrated to enhance disease outcomes and increase survival rates, 
especially when combined with radiation or chemotherapy. Despite the equivocal nature of 
the available data, there is support for the prognostic and predictive usefulness of immune 
checkpoint molecules, notably PD-L1, and multiple studies support the useful use of immune 
checkpoint inhibitors in the management of OSCC.
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Cytotoxic T Lymphocyte Antigen 4
CTLA-4, or cytotoxic T lymphocyte antigen 4, which 
is mostly expressed in T cells, was identified as the first 
immune checkpoint receptor to be targeted. Activated B 
cells, monocytes, granulocytes, and dendritic cells (DCs) 
express these factors at lower levels. Inducing T cell 
malfunction and contributing to the negative regulation 
of the immune response, CTLA-4 can bind the B7 protein. 
CTLA-4 has an inhibitory effect on normal tissues without 
causing undue harm, and cancer cells release transforming 
growth factor-beta (TGF-β), which can stimulate CTLA-
4 expression and cause T cell exhaustion, which impairs 
T cell activity and suppresses the immune system. T cell 
function is lost as a result of CD28’s greater affinity for 
CTLA-4 on T cell surfaces than for CD80 or CD86.7-9

Two ligands expressed on the surface of APC, CD80 
and CD86, are bound by both CTLA-4 and CD28. 
Furthermore, CTLA-4 expression rises in response to 
T cell activation to the point where it finally blocks co-
stimulation and deactivates T cells. Tregs express CTLA-
4 as well. Some of the characteristics of CTLA-4 make 
it occasionally localize to the plasma membrane. About 
90% of CTLA-4 is found inside cells. CTLA-4 induces 
endocytosis as well. Research indicates that lysosomal 
blockage has the ability to prevent CTLA-4 degradation10 
(Figure 1).

Programmed Death Ligand 1/Programmed Cell Death 
Protein-1
Activated T cells and B cells express PD-1, a member of 
the CD28 receptor family. Monocytes and a tiny portion 
of thymocytes also contain this protein. Activated 
lymphocytes, endothelium, and epithelial APCs express 
PD-L1 and PD-L2, two ligands for PD-1, although PD-
L1 is highly induced in hematological and solid cancers. 
The tumor cell overexpression of PD-L1 can encourage 
the growth of new tumors. Patients with poor prognoses 
and high tumor grades are closely correlated with 
high expression of PD-L1 in tumor cells. PD-1/PD-L1 
signaling is triggered during inflammatory responses. 
Although Tregs’ capacity to mediate immunological 
tolerance is hindered when PD-1 is inhibited, this does 

not imply that PD-1 can directly control Treg function. In 
addition to diminishing antitumor T cell function, PD-L1 
modifies the relationship between DCs, myeloid-derived 
suppressor cells, and Tregs. PD-1 and CTLA-4 share 
structural similarities and are members of the same protein 
family. DCs and activated macrophages both express the 
PD-L2 molecule. Cytokine production is suppressed, and 
lymphocyte proliferation is reduced by binding PD-L1 to 
PD-1. T cells become phosphorylated when PD1 binds 
to PDL-1, which in turn induces downstream kinase 
proteins to become dephosphorylated.11,12

T Cell Immunoglobulin Mucin 3
Th2 cells do not express TIM-3; only cluster of 
differentiation 4 (CD4) + T helper 1 (Th1) lymphocytes 
express it. Tregs, DCs, monocytes, mast cells, natural killer 
(NK) cells, and tumor-infiltrating lymphocytes express it 
as well. Additionally, tumor cells, including melanoma 
and B-cell lymphoma cells, have TIM-3 on them. Research 
has indicated that T cell tolerance can be regulated by 
TIM-3 and its ligands. Galectin-9, a member of the 
galectin family, is the primary ligand for TIM-3. It has the 
ability to control a variety of biological processes in tumor 
cells, including adhesion, apoptosis, and aggregation. 
Moreover, it can impair Th1 and Th17 cell function while 
ultimately speeding up the Th1 cell apoptotic process. By 
secreting interferon‐gamma (IFN-γ), TIM-3 + CD4 + cells 
exert anti-tumor actions in the early phases of tumor 
growth. Though research indicates that TIM-3 expression 
is not correlated with metastasis—which is not the 
case in lymph nodes—it is elevated in carcinomas and 
adenocarcinomas. Excessive production of TIM-3 leads 
to effector T cell fatigue, which can impede the antitumor 
immune response and tumor clearance. Tumorigenesis is 
dramatically reduced, and antitumor immune responses 
are enhanced when CD4 + and CD8 + T cell function is 
increased and suppressor cell activity is decreased.13-15

Lymphocyte-activated Gene 3
The immunoglobulin (Ig) superfamily, which includes 
this protein, is mostly expressed on activated T cells, 
while it can also be expressed on B cells, NK cells, and 
plasmacytoid DCs. LAG-3 acts similarly to CTLA-4 and 
PD-1.37, negatively modulating T cell proliferation, 
activation, and homeostasis. LAG-3 is essential to Tregs’ 
ability to serve as inhibitors. LAG-3 has a higher affinity 
for MHC-II and shares the same protein sequence as 
the CD4 receptor. The connection between LAG-3 and 
MHC-II is not necessary for its effect on CD8 + T cell 
activity. Another ligand for LAG-3 is thought to be liver 
and lymph node sinusoidal endothelial cell C-type lectin 
(LSECtin), which is a member of the DC signaling family. 
LSECtin inhibits the anti-tumor immune response by 
binding to LAG-3 and reducing IFN-γ production 
in cancer. LAG-3 is essential for maintaining T cell 
homeostasis and is mostly expressed in Tregs. According 
to research, fibrinogen-like protein 1 (FGL1), a new Figure 1. A Summary of Immune-check Points
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ligand for LAG-3, functions as MHC-II independently as 
the primary functional ligand for LAG-3. FGL1 enhances 
T cell activity, inhibits antigen-specific T cell activation, 
and fortifies anti-tumor immunity.16-18

T Cell Immunoglobulin and Receptor Tyrosine-based 
Inhibitory Motif
TIGIT belongs to the family of poliovirus receptor/
nectin, which is made up of four domains, including 
the type 1 transmembrane domain, the extracellular Ig 
(IgV) variable region domain, the classical ITIM, and 
the Ig tyrosine d motif. TIGI lymphocytes express this 
immunoglobulin, particularly NK cells, follicular helper 
CD4 + T cells, effector CD8 + T cells, and regulatory 
and effector CD4 + T cells. Moreover, endothelial cells, 
fibroblasts, DCs, and tumor cells all have high expression 
levels of this cell surface receptor.19,20

Glucocorticoid-Induced Tumor Necrosis Factor 
Receptor Family Gene
Effector T cells, NK cells, and CD25 + CD4 + Tregs all 
express GITR, a new member of the TNFR superfamily. 
Treg recruitment is inhibited when GITR binds to its 
ligand. It reduces their inhibitory capacity and increases 
Nuclear factor kappa B (NF-κB) signaling and the 
mitogen-activated protein kinase/signal-regulated 
kinase pathway. This gene triggers the release of pro-
inflammatory cytokines, boosts T cell proliferation, and 
improves anti-tumor activity.21-24

Immunoglobulin Domain V Suppressor of T Cell 
Activation
This molecule is known as Gi24, or embryonic stem 
cell differentiation 1, and functions similarly to PD-L1 
in terms of function and potency in suppressing T cell 
activation. Numerous tumor models show that VISTA 
enhances antitumor immune blockade and is strongly 
expressed on tumor-infiltrating leukocytes.25

V Suppressor of T Cell Activation and Programmed 
Cell Death Protein-1 Inhibit T Cells and Modulate T 
Cell Responses
On activated T cells, the interaction between ligand 
and VISTA suppresses T cell growth and chemokine 
and cytokine production. Blocking the VSIG3 pathway 
and its ligand may be a novel approach to cancer 
immunotherapy, as evidenced by the inhibition of ligands 
on activated T cells and the high expression of ligand in 
colorectal adenocarcinoma, hepatocellular carcinoma, 
and intestinal-type gastric cancer.26-28

Anti-inflammatory Function
Research has demonstrated that inflammation, which 
results in tissue damage and the release of particular 
inflammatory cytokines, raises the aggressiveness of oral 
malignancies. According to previous research, oral cavity 
squamous cell carcinoma (OSCC) can prevent cancer 

from becoming malignant by expressing pro- or anti-
inflammatory cytokines (TGF-β1, interleukin [IL-10], 
IL-4, or IFN-γ, monocyte chemoattractant protein 1). 
Th cells, or Th cells, are functionally categorized as Th1, 
Th2, and Th17 cells and are mostly involved in tumor 
immunology.29 While most Th1 cytokines, including 
IFN-γ, are classified as protumors, Th2 cytokines (IL-4, 
IL-5, and IL-10) are considered anti-inflammatory and 
are frequently linked to protumor activity. Patients with 
OSCC had significantly greater serum levels of IL-17A, 
TGF-β1, IL-4, and IL-10 than the control group, but 
comparatively lower levels of IL-2 and IFN-γ. In patients 
with OSCC, the negative regulation of NK cells is linked 
to the increased production of IL-10 and TGF-β1, as well 
as reduced IFN-γ.30,31

 
Anti-inflammatory and Anti-tumor Cytokines
TGF-β and IL-10 are anti-inflammatory and 
immunosuppressive cytokines that lead to immunological 
suppression of neoplastic cells. They are also anti-tumor 
cytokines. The overexpression of IL-10 and TGF-β2 
is, in fact, linked to a worse prognosis for OSCCs. It 
suppresses dendritic and macrophage cells, controls 
regulatory T cell development, and builds tumor cells’ 
resistance to the effects of cytotoxic T lymphocytes. IL-
4, an additional anti-inflammatory cytokine, is regarded 
as proinflammatory as well.32,33 IL-17 is an inflammatory 
cytokine that is mostly released by neutrophils and type 17 
T-helper cells. In OSCC, there has also been evidence of 
increased IL-17 expression. The advancement of tongue 
cancer is linked to IL-17 overexpression. The expression 
of IL-17 protein in the OSCC tissue is linked to a worse 
prognosis, including metastasis, recurrence, clinical 
stages, and T classification.33

Therapeutic Approaches
A humanized IL-1α neutralizing antibody called MABp1 
(XBiotech Inc.) has been shown to enhance clinical 
outcomes and survival rates in patients with advanced 
non-small cell lung cancer, ovarian cancer, and other 
resistant malignancies.34-36

Targeting Tumor-Associated Macrophages
A novel treatment method is provided by manipulating 
protumorogenic M2 polarization to the anticancer M1 
macrophage phenotype. Using poly (I:C) to stimulate 
TLR3/Toll-IL-1 receptor domain-containing adapter 
molecule 1, many proinflammatory cytokines, including 
IL-1β, are secreted more quickly, and M1 macrophage 
polarization is accelerated.37 Tumor-conditioned 
macrophages can be effectively stimulated to produce 
cytotoxic activity against cancer cells by the TLR3 agonist 
poly (I:C).38

Conclusion
The tumor microenvironment (TME) of OSCC contains 
a variety of immune modulators, such as cytokines, 
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immune checkpoint inhibitors, and cellular elements. 
Within the TME, extrinsic and internal processes regulate 
these substances and cellular constituents. Targeting 
these processes with particular antibodies, miRNAs, and 
extracellular vesicles produced from T cells are some of 
the treatments available. Bisphosphonates can be used 
to stimulate alternate TAM differentiation as a novel 
treatment strategy. However, when it comes to optimizing 
treatment strategies, the elements of pre-tumor immunity 
remain incompletely known. Immunology and anesthesia 
transplantation may provide novel therapeutic benefits.
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