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Introduction
Ischemia-reperfusion injury (IRI) is a complex 
pathophysiological process that inaugurates cellular injury 
in various vascular complications such as myocardial 
infarction (MI), stroke, and even organ transplantation.1 
Myocardial reperfusion is inevitable due to prevalent 
MI treatments such as thrombolysis, angioplasty, and 
coronary bypass.2 While the re-establishment of blood 
flow to ischaemic myocardial tissue has a critical effect in 
life-saving therapies, its paradoxical harmful results may 
decrease the beneficial effects of myocardial reperfusion.3 
It has been demonstrated that reperfusion can affect left 
ventricle function more significantly than infarction. 
Consequently, IRI may independently contribute to 
cardiac remodeling.4

Stem cells (SCs) increase the opportunity to develop 
effective and safer therapies for various diseases with 
the potential to generate or replace damaged tissue.5-7 
SC therapy can provide a promising treatment strategy 
for patients with ischemic heart disease. Recent research 
on this therapeutic approach has yielded contradictory 
and heterogeneous results.8 Different types of SCs 
have been identified, each with various regenerative 

and improvement effects on cardiac tissues.9 During 
myocardial ischemic attacks, adult heart SCs can 
regenerate vascular smooth muscle cells and vascular 
endothelial cells. However, SC regeneration capacity is 
limited, and myocardial tissue improvement is associated 
with scar formation. In addition, the microenvironment 
surrounding the infracted region is not a suitable substrate 
for SC survival, and SCs in the infarcted area of the 
heart are destroyed by apoptosis.10 Therefore, there is an 
urgent need to develop new therapies for the treatment of 
ischemic heart damage. Recent evidence suggests that the 
therapeutic properties of SCs are mediated by paracrine 
agents released by these cells. 

Exosomes, small extracellular vesicles, with 30 to 150 
nm in diameter, are released from most cells, including 
dendritic cells, lymphocytes, platelets, and mast cells, 
under both physiological and pathological conditions.11,12 
These extracellular vesicles spread throughout the body 
and are abundant in blood, saliva, urine, and breast 
milk.12 Exosomes have a fluid lipid bilayer membrane and 
contain proteins, nucleic acids, and lipids.13 Exosomes 
exist in two sizes: large exosomes (90 to 120 nm in 
diameter) and small exosomes (60 to 80 nm in diameter).14 
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Abstract
Ischemia-reperfusion injury (IRI) remains a global public health problem, with increasing 
incidence which is associated with significant morbidity and mortality. The duration of blood 
flow deprivation is a critical risk factor in conditions such as myocardial infarction (MI), stroke, 
solid organ transplantation, and hemorrhagic shock. From a pathophysiological perspective, 
IRI leads to numerous architectural, cellular, and metabolic changes in tissues. Moreover, local 
and systemic inflammation occurs after reperfusion of ischemic tissue. Clinically, the treatment 
of cases with IRI is frequently restricted to supportive maneuvers, with no exact target-oriented 
therapies validated so far. Recent research reveals the efficacy of stem cells as a promising 
therapeutic approach. Additionally, exosomes have been suggested to exert a significant impact 
on the stimulation of useful signaling pathways in different cardiovascular diseases. This review 
provided an overview of the new treatment strategies such as stem cell therapy (SCT) and 
exosome-based treatments for improving myocardial IRI. 
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These extracellular vesicles mediate various biological 
processes such as cell-to-cell communication, autophagy, 
lysosomal exocytosis,15 organ crosstalk, intercellular 
signaling, inhibition of apoptosis,16 cell waste product 
clearance, maintenance of cell homeostasis in an optimal 
level, modulation of the immune and inflammatory 
systems, and angiogenesis.17. Furthermore, microRNAs 
(miRNAs) carried by exosomes can activate restorative 
and protective pathways in recipient cells by inducing 
genetic instructions.18-20 Notably, exosomes, as one of 
the paracrine factors released by SCs, play a prominent 
role in improving myocardial IRI.10,20-22 In this study, we 
summarized the applications, possible mechanisms, and 
functions of SCs and exosomes in myocardial IRI and 
highlighted the latest research progress.

Pathophysiology of Ischemia-Reperfusion Injury 
To date, the precise underlying mechanisms of IRI 
pathogenesis have not been elucidated. IRI arises from 
ischemia and is further exacerbated during tissue 
reoxygenation. Oxygen is a critical molecule in cellular 
respiration through oxidative phosphorylation for 
adenosine triphosphate (ATP) production.23 Tissue 
deprivation of oxygen during ischemia induces the 
degradation of cellular ATP resources due to the sudden 
cessation of oxidative phosphorylation. Free radicals 
are highly reactive molecules formed primarily during 
cellular respiration and normal myocardial metabolism. 
Unbalanced production of free radicals and the cell’s 
ability to scavenge them may cause tissue damage.24 
Furthermore, the restoration of blood flow triggers some 
pathologic pathways involved in tissue injuries such as 
disruption of calcium (Ca + ) homeostasis, reduced level 
of ATP production, induction of toxic lipid metabolites 
by phospholipase, endonucleases, proteases enzymes, 
and overproduction of tissue-damaging reactive oxygen 
species (ROS) in the area, which may cause oxidative 
injury to cellular structures, activation of inflammatory 
processes, and the opening of mitochondrial permeability 
transition pore (MPTP), resulting in cell death by 
apoptosis and necrosis.25 Mitochondria are the primary 
reservoir of intracellular ROS. MPTP pores may be 
opened by elevated levels of ROS, which also have extra-
mitochondrial targets. The tetrahydrobiopterin–e nitric 
oxide synthase (NOS) complex is theoretically a crucial 
target of ROS, which may be reduced by oxidation, leading 
to peroxynitrite formation and reduced NO production. 
Programmed cell death via receptor-interacting protein 3 
(RIP3) plays a significant role in myocardial reperfusion 
damage through Ca2 + /calmodulin-dependent protein 
kinase II (CaMKII) and the MPTP.26

Furthermore, the opening of pores results in the 
release of mitochondrial DNA fragments, ATP, calcium, 
and high mobility group box 1 protein (HMBGB1), 
which amplifies the NLRP3-inflammasome and TLR9. 
This activation leads to the expression of the myeloid 
differentiation primary response gene 88 (MyD88) 

and nuclear factor-κB (NF-κB) pathways, ultimately 
causing the overproduction of inflammatory mediators 
such as monocyte-chemoattractant protein 1 (MCP1), 
interleukin-1β (IL-1β), IL-6, tumor-necrosis factor-α 
(TNF-α), and IL-18.27 IL-1β and IL-18 levels in cardiac 
fibroblast are exacerbated by inflammasome activity, 
inducing pyroptosis in surrounding cardiac cells via 
caspase-1.27 Additionally, B-cell lymphoma 2 (Bcl-2), 
Bcl-2-associated X protein (Bax), Bcl-2-associated death 
promoter (Bad), and glycogen synthase kinase 3 β (GSK-
3β) may regulate MPTP. The opening of the pore results 
in cell death by releasing pro-apoptotic agents such as 
cytochrome c along with ROS.28

Stem Cell Therapy in Cardiac Ischemia-Reperfusion 
Injury 
SCs are considered valuable candidates in the vast majority 
of biological and medical applications due to their unique 
characteristics.29,30 Acute myocardial infarction (AMI) is 
one of the most devastating cardiovascular events and a 
common phenomenon that results in cardiac ischemia 
damage and increased mortality through the induction of 
apoptosis, inflammatory responses, and tissue necrosis.31 
Ischemic heart damage results in a change in myocardial 
contractility, scar formation, and problematic ventricular 
stiffness.31,32 In recent years, stem cell therapy (SCT) has 
emerged as a valuable promising therapeutic method 
for overcoming AMI-induced defaults.31-34 Large-scale 
studies have proposed that SCT improves left ventricular 
ejection fraction and exercise capacity and decreases 
the rate of rehospitalization followed by death, thereby 
improving the quality of life in these patients.32 Various 
cell types from different resources have been identified 
and used for the repair and regeneration of cardiac tissues 
such as cardiac SCs,35 skeletal myoblasts, bone marrow 
mononuclear cells (BMMNCs), mesenchymal SCs, 
endothelial progenitor cells, and hematopoietic SCs.32,36

Among the SCs with different resources, mesenchymal 
stem cells (MSCs) showed the most beneficial impacts 
in the cardiac infarct model in terms of mechanical and 
regenerative activity, and even clinical outcomes.37 When 
comparing the therapeutic effects of MSCs and bone 
marrow-derived mesenchymal stem cells (BMMSCs) in 
chronic cardiac ischemic diseases, it is strongly approved 
that MSCs are more effective in improving heart function. 
MSC therapy has biological efficacy for several reasons. 
First, MSCs have the capability to differentiate into 
cardiomyocytes and other cell types. Secondly, they 
can form new networks of blood vessels following MI. 
Thirdly, they stimulate the endogenous cardiac precursors 
to repair and regenerate faulted tissues, and finally, these 
cells are involved in paracrine mediators’ secretions.37

In cases of IRI, MSC administration was significantly 
associated with reduced cell death markers and 
improved cell viability.38 However, previous studies have 
demonstrated that the transplantation of MSCs into hearts 
after AMI or IRI leads to improvements in infarct size and 
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cardiac function, accompanied by a significant reduction 
in cardiomyocyte death,39 and these cardioprotective 
effects are attributed to paracrine factors.40,41 Furthermore, 
numerous in vitro and in vivo studies on cardiac IRI 
have reported the pleiotropic effects of MSCs, including 
proangiogenic, immunomodulatory, anti-apoptotic, 
and antifibrotic characteristics, as well as modulation of 
inflammation and cytokine expression. In addition, MSCs 
can affect the homing process, including endothelial cell 
adhesion, chemokine-chemokine receptor interactions, 
invasion via the extracellular matrix, and transendothelial 
migration.42

Several previous studies have started MSC injection a 
few hours post-reperfusion. In such situations, activation 
of lethal reperfusion injury and the deterioration of 
endothelial cells can be observed within the first minutes 
of reflow, underscoring the importance of MSC injection 
in cardiac injuries at the onset of reperfusion.38 Heldman 
et al showed the regenerative and antifibrotic effects of 
mesenchymal adult stromal cells on the myocardium, 
which were associated with improved functional capacity 
and quality of life.43

In a study, Cho et al used human thymus adipose tissue-
derived mesenchymal stem cell (TAT-MSC) to treat a rat 
model of heart ischemia-reperfusion. Histopathological 
studies revealed a significant reduction in the infarcted area 
in the TAT-MSC group compared to the control group.44 
Cortical bone-derived stem cell (CBSC) therapy in a swine 
model of AMI exhibited a reduction in apoptosis and scar 
size, an elevation in the number of macrophages and T 
cells, and an improvement in cardiac pump function after 
seven days of treatment.5 Previous studies have suggested 
that the cortical bone, compared to bone marrow, might 
be a source of primitive SCs.46,47 Some beneficial features 
of CBSCs include routine bone biopsy procedures for 
obtaining cells, expression of cell surface markers distinct 
from MSCs, and finally a lack of hematopoietic markers.48 
A research team recently documented that in a mouse 
MI model, autologous CBSCs delivery can improve heart 
structure by inducing the differentiation of CBSCs into 
new cardiovascular cells. These findings suggest that the 
ability of CBSCs to secret paracrine factors is involved in 
healing wounds after ischemic injury.49

It was previously believed that the mammalian heart 
is a terminally differentiated post-mitotic organ with no 
regenerative potential.50 Nevertheless, Beltrami et al for 
the first time isolated and expanded cardiac SCs (CSCs) 
from the hearts of adult rats, which could differentiate 
into the myogenic cell lineage, including endothelial 
cells, cardiomyocytes, and vascular smooth muscle 
cells, both in vivo and in vitro. In addition, CSCs were 
found to improve infarcted hearts.51 Some studies have 
claimed the superior effects of CSCs compared to other 
SCs such as MSCs and BMMNCs.52 Systematic research 
has documented the improvement effects of CSC therapy 
on ejection fraction in animal models of MI compared 
to the placebo group. However, due to overlapping 

culture characteristics in different CSC types, significant 
differences were reported in their effects in post-MI animal 
research.53 Several studies have reported the potential 
of CSCs in cardiac repair, along with their effectiveness, 
safety, and feasibility in therapeutic approaches involving 
cell transplantation.50 For example, in an animal study by 
Dawn et al, the transplantation of CSCs after reperfusion 
in rats resulted in a 20% reduction in infarction size 
and induced myocardial regeneration.54 These results 
were approved by other researchers working on larger 
laboratory animals such as pigs. Johnston et al showed 
that intracoronary infusion of cardiosphere-derived CSCs 
leads to a reduction in infarcted size, adverse cardiac 
remodeling, and the generation of new myocardial tissue, 
followed by improved hemodynamics.55

As a result of the original European Society of Cardiology 
(ESC) Task Force consensus document, autologous bone 
marrow cell therapy in AMI was designed as the first 
Phase III controlled clinical trial with autologous BMCS 
injection as part of standard treatment for AMI, with the 
main goal of finishing recruitment by October 2017.56 The 
results of Mathur and colleagues’ study on AMI showed 
that this treatment approach provides a new therapeutic 
strategy for future clinical trials for treatment in AMI 
treatment.57

Despite the positive findings of clinical trials in 
improving myocardial function after using CSCs in 
infarcted patients, some disappointing results were 
observed due to the engraftment of the transplanted 
cells.50,58 To overcome this issue, researchers have focused 
on using biomaterials (e.g., cell sheets), hydrogels, and 
notably, porous scaffolds to improve the engraftment and 
survival rates of CSCs.59

Another promised SC that is effective in improving 
heart function and directly impacts myocardial 
remodeling post-MI is human embryonic stem cell-
derived cardiomyocytes (ESC-CMs).60 Nevertheless, the 
efficacy of ESC-CMs in treating and repairing cardiac 
faults remains controversial. It is assumed that different 
ischemia models might lead to different heart repair 
and cell retention outcomes.61 However, cardiomyocyte 
renewal, as comprehensively defined by Eschenhagen 
et al, provides new insight into the improvement and 
treatment of injured hearts in different animal models 
and future clinical trials.62

Exosome Therapy in Cardiac Ischemia-Reperfusion 
Injury 
Several studies demonstrated that exosomes have a 
protective effect on myocardial IRI.11,20,63 miRNAs are the 
most important exosomal cargos involved in controlling 
pathological damage caused by AMI.64 The results of 
a study indicated that exosomes from macrophage 
migration inhibitory factor (MIF), a pro-inflammatory 
cytokine with survival and proliferative effects, engineered 
umbilical cord MSCs,65 have a cardioprotective effect 
in AMI and significantly reduce fibrosis area while 
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Table 1. Summary of Effects of Exosomes in Heart IRI

Exosome miRNA Effect Signaling Pathway Reference

MSC-derived exosome miR-133a-3p
Inhibits apoptosis, reduces fibrosis, and preserves heart 
function in vitro and in vivo

AKT signaling pathway 16

Ischemic preconditioning-
induced serum exosomes

-
Improves cardiac function and reduces inflammatory factor 
production, cardiomyocyte apoptosis, and myocardial 
infarct size

PI3K/AKT signaling pathway 11

MSC-derived exosome miR-338
Inhibits cardiomyocyte apoptosis and improves cardiac 
function in rats with MI

MAP3K2/JNK signaling pathway 20

MSC-derived exosome -
Reduces myocardial IRI by inducing cardiomyocyte 
autophagy

AMPK/mTOR and AKT/mTOR 
pathways

20

Adipose-derived SC-derived 
exosomes

miR-126
Protects myocardial cells from apoptosis, inflammation, and 
fibrosis and increases angiogenesis

MAPK, PI3K, and VEGF signaling 
pathways

75

Human umbilical cord 
MSC-derived exosome

-
Protects myocardial cells from apoptosis, promotes tube 
formation, migration of EA hy926 cells, and angiogenesis 
and regulates expression of Bcl-2 family

PI3K/AKT pathway 80

Coronary serum of patients 
with MI-derived exosome

miRNA-143 Enhances angiogenesis in cardiac endothelial cells IGF-IR/NO signaling pathway 81

MSC-derived exosome miRNA-144 Inhibits cell apoptosis in hypoxic conditions PTEN/AKT pathway 82

BM-MSC-derived exosomes.
miR-149/let-7c/
Faslg Axis

Protects rat cardiomyoblasts from
H/R injury

w/β-catenin signaling
pathway

83

MSC-derived exosome miRNA-301 Inhibits myocardial cell autophagy LC3-II/LC3-I and P62 pathway 84

MSC-derived exosome miRNA-181a
Provides protection against a host of immune-related genes 
by the miRNA-mRNA network

A/PI3K → ERK → c-Fos pathway 85

TIMP2-modified human 
umbilical cord MSC-derived 
exosome 

-
Ameliorates cardiac function by improving MI-induced
oxidative stress and ECM remodeling, suppresses 
cardiomyocyte apoptosis, and increases angiogenesis

AKT/Sfrp2 pathway 86

Adipose-derived MSC-
derived exosome

-
Protects the heart by reducing inflammatory oxidative stress 
and apoptosis in IRI conditions

TLR4/NF-kB/PI3K/AKT pathway 87

MSC- derived exosome miR-182
Polarizes inflammatory macrophage towards
the anti-inflammatory macrophage in the heart

TLR4/NFkB/PI3K/AKT pathway 88

MSC-derived exosome -
Increases angiogenesis in cardiac cells, enhances 
proliferation in cardiomyocytes, and improves heart 
function

ERK1/2 pathway 89

MSC-derived exosome miR-21a-5p
Provides cardioprotecting by inducing cell proliferation and 
angiogenesis

PI3K/AKT pathway. Peli1, PDCD4, 
FasL, and PTEN

90

Adipose-derived MSC-
derived exosome

-
Prevents apoptosis in cardiomyocytes by inhibiting 
oxidative stress 

AMPK/mTOR and Akt/mTOR 
pathways and Hsp70–TLR4–Hsp27 
axis

91

BM-MSC-derived exosome -
Reduces anoxia-induced cardiomyocyte apoptosis and 
ameliorates myocardial function after infarction by 
regulating GATA-4 expression 

AKT and ERK pathways 92

BM-MSC-derived exosome miR-486-5p
Suppresses apoptosis in cardiomyocyte induced by I/R 
injury and protects cardiomyocytes against ischemic injury 
in vitro and in vivo

PTEN/ PI3K/AKT signaling pathway 93

Hypoxia-elicited MSC-
derived
exosomes

miR-125b Facilitates ischemic heart repair by anti-apoptotic effect VEGF, FGF, and PDGF pathways 94

Engineered exosomes with 
ischemic myocardium

- Promotes therapeutic effects in acute MI condition
Intracellular protein kinase B and 
extracellular signal-regulated 
kinase 1/ 2 pathway

95

Transplanted MSC-derived 
exosome

mir-125b
Diminishes infarct size and improves cardiac function by 
reducing autophagic flux in infarcted hearts 

mTOR and AMPK pathways 96

Note. IRI: Ischemia-reperfusion injury; miRNAs: MicroRNAs; MSC: Mesenchymal stem cell; AKT: Protein kinase β; MI: Myocardial infarction; BM-MSC: Bone 
marrow mesenchymal stem cells; MAPK: Mitogen-activated protein kinase; JNK: c-Jun N-terminal kinase; VEGF: Vascular endothelial growth factor; PI3K: 
Phosphatidylinositol 3-kinase; ECM: Extracellular matrix.
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increasing capillary formation. Interestingly, the 
overexpression of miR-133a-3p in exosomes derived 
from MIF, to some extent, mediates the cardioprotective 
effects of these exosomes in the ischemic heart through 
protein kinase β (AKT) signaling pathway and by 
increasing AKT phosphorylation in cardiomyocytes 
and endothelial cells.16 The AKT signaling pathway 
is a prominent target for cardioprotection.66,67 This 
pathway is an effective factor for cell growth, migration, 
proliferation, differentiation, adhesion, survival, 
cytoskeletal organization, protein production, and 
metabolism and prevents IRI by reducing inflammatory 
factors, oxidative stress, and apoptosis.68-70 However, 
these cardioprotective effects are reduced by suppressing 
miR-133a-3p.16 Additionally, another animal study 
showed that ischemic preconditioning-induced serum 
exosomes, through activating the phosphatidylinositol 
3-kinase (PI3K)/AKT signaling pathway, ameliorate 
cardiac function, decrease the formation of inflammatory 
cytokines, reduce cardiomyocyte apoptosis, and have a 
protective effect against myocardial IRI.11 Moreover, the 
results of a study showed that microRNA-338 in MSCs-
derived exosomes can suppress apoptosis in myocardial 
cells during MI by regulating mitogen-activated protein 
3 kinase/c-Jun N-terminal kinases signaling pathway.20 
Excessive ROS generation during myocardial IRI leads 
to autophagy dysfunction and cell death.63 However, 
moderate myocardial autophagy decreases the apoptosis 
rate and increases survival in myocardial cells, whereas 
excessive autophagy exacerbates myocardial injury.71,72 
Injection of MSC-derived exosomes into an in vivo 
myocardial IRI rat model increased moderate autophagy 
by regulating the AMPK/mechanistic target of rapamycin 
(mTOR) and AKT/mTOR signaling pathways, leading 
reduced apoptosis, increased MI size, and improved heart 
function.63 It is recognized that the PI3K/AKT pathway 
is involved in the autophagy signaling pathway,73 and 
probably AMPK/mTOR and AKT/mTOR pathways are 
actively involved in autophagy processes. Exosomes can 
interfere with these processes, mediated by their miRNA 
content.74 Furthermore, it has been demonstrated that 
exosomes from miR-126-overexpressing adipose-derived 
SCs protect myocardial cells against acute myocardial 
ischemic injury by inhibiting apoptosis, inflammation, 
and fibrosis and by increasing angiogenesis.75 Thus, 
exosomes represent a promising new therapeutic 
approach for treating myocardial IRI by transferring their 
miRNAs and modulating different signaling pathways in 
recipient cells.

Remote ischemic preconditioning (RIPC) can reduce 
myocardial IRI.76 RIPC in MI models inhibits the release 
of anti-inflammatory exosomes,77 blocks NF-κB related 
cytokine release through TLR4 receptor pathways, 
inhibits inflammatory-induced fibrosis and cardiac 
dysfunction, and limits myocardial apoptosis.77,78 The 
concentration of extracellular vesicles increases during 
RIPC, and extracellular vesicles containing miRNAs 

are likely involved in cardioprotection.76 Moreover, 
exosomes containing miRNA allow distant intercellular 
communication and cellular cross-talk, playing a 
prominent role in myocardial protection.76,77

After MI, proinflammatory M1-like macrophages 
release exosomes. A recent study demonstrated that M1-
like macrophage-derived exosomes carry high levels of 
proinflammatory miRNA-155 to endothelial cells. These 
exosomes target Rac family genes, protein kinase AMP-
activated catalytic subunit alpha 2 (AMPKα2), Sirt1/
AMPKα2–endothelial NOS, and RAC1–PAK2 signaling 
pathways, thereby inhibiting angiogenesis and aggravating 
cardiac dysfunction. Therefore, preventing the secretion 
of M1-like macrophage-derived exosomes may be a 
potential therapeutic target for facilitating cardiac repair 
after MI.79 The effects of exosomes in myocardial IRI are 
summarized in Table 1. 

Conclusion 
Despite major advances in the treatment and management 
of ischemic heart disease, it remains a main cause of 
morbidity and mortality worldwide. Treatment of IRI 
cases is still restricted, and exact target-oriented therapies 
have not been confirmed yet. SCT is a promising approach 
for improving damaged myocardial tissue, with various 
types of SCs being beneficial for ischemic heart disease 
treatment. Additionally, exosomes which are released by 
SCs as paracrine factors, play a critical role in improving 
myocardial IRI. Therefore, there is hope for the progress 
of these therapies as remarkable therapeutic strategies.
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