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Abstract
Background: Stress and its complications such as anxiety and depression continue to be regarded 
as health issues in human societies. Therefore, an effective treatment strategy is highly valued 
for dealing with stress and related disorders. In spite of studies suggesting the neuroprotective 
effects of silymarin and buspirone alone, the combined effects of these treatments on chronic 
stress have not been elucidated yet. Thus, this study aimed to investigate the effect of silymarin 
and buspirone (alone or in combination) on anxiety and depressive-like behaviors and to 
evaluate corticosterone levels in a mice model of chronic restraint stress (RS). 
Methods: This study was conducted on seventy-two male BALB/c mice which were allocated in 
six equal groups. The animals were exposed to chronic RS (2 hours/day for 14 days) to induce a 
depressive-like model. An elevated plus maze (EPM) was performed to assess anxiety, while a tail 
suspension test (TST) was implemented to evaluate depressive-like behavior. Furthermore, the serum 
levels of corticosterone were measured by the enzyme-linked immunosorbent assay method. 
Results: Our data demonstrated that exposure to RS resulted in prolonged immobility in the TST 
and reduced time spent in the open arms of the EPM test. Buspirone perorally (5 mg/kg, PO) 
alone and combined with silymarin (200 mg/kg, PO) increased time spent in the open arms of 
the EPM apparatus while attenuating immobility time in TST. There was a significant decrease in 
the blood corticosterone level of buspirone and silymarin co-treated animals.
Conclusion: These findings indicated that silymarin potentiates the beneficial effect of buspirone 
against chronic RS-induced anxiety and depressive-like behaviors in mice by lowering 
corticosterone serum levels. In this regard, further investigations should be undertaken to clarify 
the exact mechanism of the observed effects.
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Introduction
Stress as a negative stimulus affects homeostasis, the 
natural regulation of living organisms, physiological 
responses, and adaptation.1 Nowadays, modernization, 
industrialization, and changes in human lifestyle have 
created a particular situation that is the source of 
various stressors.2 However, enduring stressors may 
produce chronic stress, which leads to changes in brain 
structure.3 In addition, it reduces the volume of various 
brain areas, including the hippocampus, amygdala, and 
frontal cortex (areas with the highest glucocorticoid 
[GC] receptors and represent the most elevated stress 
response), which can cause reversible cognition and 
spatial memory impairment.4 It has been demonstrated 
that prolonged exposure to stressors causes the activation 
of the hypothalamus-hypophyseal-adrenal (HPA) axis, a 
neuroendocrine pathway consisting of the hypothalamus, 
pituitary, and adrenal glands.1 The end-product of the 
HPA axis is a GC secreting from adrenal glands.5 GC has 

a prominent role in stress-related homeostasis, behavior, 
and cognition.6,7 Further, elevated GC levels increase the 
production of free radicals and reactive oxygen species.8,9

Clinical and experimental research has demonstrated 
that stress is associated with increased psychiatric 
disorders such as depression and anxiety.10-12 The 
most debilitating complication of stress is depression, 
which affects the body’s overall function, including the 
cardiovascular,13,14 gastrointestinal,15 immune,16 and 
brain structure and function.9,17 In addition, depression 
is a profound public health concern with various physical 
ailments, reduced social functioning, a significant cause 
of disability, and increased mortality. It imposes a heavy 
burden on communities.18,19 

Benzodiazepine drugs have been a choice therapy for 
anxiety symptoms for several decades. These drugs have 
well-known side effects such as drowsiness, lethargy, 
cognitive and motor impairment, and depression in some 
patients despite the effective anxiolytic impact. Hence, 
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benzodiazepines can be replaced by nonbenzodiazepine 
drugs such as buspirone without nervous system side 
effects.20,21 Buspirone is a partial agonist of the 5-HT1A 
receptor prescribed to treat patients with generalized 
anxiety disorders and common anxiety behaviors in 
adults and generally in people who experience anxiety and 
depression at different ages.22

Mary thistle (Silybum marianum L. Gaernt.) is a 
medicinal herb that has been used for hepatoprotective, 
anti-inflammatory, and antioxidant properties.23 Recent 
research has investigated the potential of silymarin 
in the central nervous system disorders such as 
Alzheimer’s disease, Parkinson’s disease, anxiety, and the 
treatment of depression by influence on catecholamine 
neurotransmitter systems such as serotonin, dopamine, 
and noradrenergic.24-29 Silymarin extract can prevent 
apoptosis due to oxidative stress and delayed neuronal 
death in hippocampal neurons.24,30 Recent studies on 
different types of stress illustrated that silymarin has 
beneficial effects on cognitive deficits, anxiety, and 
depression in long-term treatment.31,32 Numerous studies 
revealed that chronic restraint stress (RS) is one of the 
standard ways to induce depressive-like behaviors, the 
consequences of chronic stress in rodents such as mice.2,33 
Therefore, the current study was conducted to investigate 
whether a combination of silymarin with buspirone has 
potentiating effects against anxiety and depression-like 
behaviors and regulation of corticosterone levels in RS-
subjected mice.

Materials and Methods
Animals 
Male BALB/c mice (8-10 weeks old, 28-32 g body 
weight) were obtained from the animal center of Tabriz 
University of Medical Sciences. The animals were housed 
in a temperature-controlled room, with 60%-65% relative 
humidity, a 12/12-hour dark/light cycle, and had free 
access to rodent diet and tap water. 

Drugs Administration
After a week of environmental adaptation, the mice were 
randomly divided into six experimental groups of 12, 
including a control group that received normal saline 
(NS) perorally (PO) for 14 days. The other five groups 
underwent RS and subsequently received 14 days of 
treatment PO as RS + NS (10 mL/kg), RS + Bus (5 mg/kg, 
buspirone), RS + Sil (100 mg/kg, silymarin), RS + Sil (200 
mg/kg), and RS + Bus (5 mg/kg, buspirone) + Sil (200 mg/
kg). All drug solutions were prepared freshly on the day of 
experimentation by dissolving in NS. The determination 
of buspirone and silymarin dose in this study was based 
on previous studies, indicating that they have beneficial 
effects on reducing stress complications using other 
induction models.24,34,35 

Chronic Restraint Stress
The animals were exposed to chronic RS by being placed 

in 50 mL-plastic tubes with 12 holes to keep airflow for 
two hours (10-12 am) once daily for 14 consecutive days. 
Control mice were kept in their home cages in the animal 
room, except for the daily handling and NS administration.

Elevated Plus Maze
The anxiety-like behaviors were measured using the 
elevated plus maze (EPM) test. The maze consisted of four 
arms (10 cm wide and 50 cm long); two opened opposite 
arms with 1 cm walls and two closed opposite arms are 
surrounded by a transverse wall 40 cm in height. These 
four arms form a square intersection (10 cm wide and 10 
cm long), and the apparatus is elevated to a height of 55 cm 
above the floor. A mouse was placed at the intersection, 
facing the closed arm, and moved freely in different parts 
of the maze for five minutes during the experiment. The 
number of open arms entries and the time spent in the 
open arms were calculated as follows:

Percentage of time spent in the opened arm = Time spent in 
the open arm / Total time spent in open and closed arms *100

Percentage of open arm entries = The number of times 
entered the open arm / Total number of times entered the 
open and closed arms *100

The presence of a significant increase in these two 
parameters indicates that anxiety was lower in the mice.36

Tail Suspension Test
Each mouse was suspended 50 cm above the floor using 
adhesive tape for 6 minutes by the tail (2 cm from the end 
of the tail). The immobility time was calculated at the last 
4 minutes. Immobility time was defined as the lack of 
escape-oriented behavior.37 

Behavioral Analysis
All behavioral data were analyzed using Noldus 
EthoVision™ video tracking software (Noldus, The 
Netherlands). After testing each mouse, the device 
was cleaned with 10% ethanol to remove residues and 
olfactory clues.

Sampling and Corticosterone Evaluation
For the biochemical test, mice were anesthetized with 
high doses of ketamine (90 mg/kg) and xylazine (10 mg/
kg) between 10 and 12 AM. 24 hours after the end of the 
behavioral test. The blood samples were taken from the 
heart and centrifuged at 1500 × g for 10 minutes at 4 °C. 
According to the manufacturer’s instructions, serum 
corticosterone levels were measured by a commercially 
specific enzyme-linked immunosorbent assay kit (Abnova 
Corporation, Walnut, CA, USA).38

Statistical Analysis
All data are expressed as the mean ± standard error of the 
mean (SEM). Statistical differences between study groups 
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were analyzed using the analysis of variance and Tukey 
statistical methods and GraphPad Prism 6.01 software. 
Additionally, P values < 0.05 were considered statistically 
significant.

Results
Effects of Co-administration of Silymarin and Buspirone 
on Anxiety and Depressive Behaviors
The results of the EPM test revealed that there was a 
significant difference in the percentage of entry (open 
arms entries [OAE]) and the percentage of spent time 
(open arms times [OAT]) in the open arms between the 
mice of RS and NS groups (P < 0.001, Figures 1A and 
1B, respectively). However, treatment with buspirone (5 
mg/kg, PO, P < 0.05) and co-administration of buspirone 
(5 mg/kg, PO) with silymarin (200 mg/kg, PO, P < 0.01) 
represented a significant increase in the percentage of 
OAE and OAT in the restraint-exposed mice.

The post hoc test showed that chronic RS significantly 
reduced mobility time in the tail suspension test (TST) 
between the control and NS groups (P < 0.001, Figure 1C). 
In contrast, in buspirone-treated mice, mobility time 
significantly increased compared to the RS group 
(P < 0.05). Furthermore, co-administration of silymarin 
(200 mg/kg, PO) with buspirone (5 mg/kg, PO) had an 
antidepressant-like activity, which was manifested by the 
shortening of the duration of immobility (P < 0.001).

The Effect of Co-administration of Silymarin and 
Buspirone on Serum Corticosterone Levels
As shown in Figure 2, the serum corticosterone level was 
significantly increased in the RS group compared to the 
control group (P < 0.001). Co-administration of silymarin 
(200 mg/kg, PO) as the effective dose with buspirone (5 mg/
kg, PO) markedly decreased the corticosterone level when 
compared with the RS + NS group (P < 0.001). Furthermore, 
the corticosterone levels were significantly decreased in 
buspirone (5 mg/kg, PO) and RS-exposed mice (P < 0.01). 

Discussion
There is growing evidence indicating an increase in 

combination drugs used to treat psychiatric and physical 
symptoms and diseases. On the other hand, herbal 
remedies are traditionally employed to treat diseases 
experimentally without having scientific information 
about their effects and side effects on patients.39,40

The present study investigated the effect of two doses 
of silymarin (200 and 100 mg/kg) and co-administration 
with buspirone (5 mg/kg) on anxiety and depression 
behaviors due to chronic RS in male mice. The results 
demonstrated that treatment with buspirone for 14 days 
in chronic RS mice improved anxiety and depressive-
like behaviors by the increasing number of entries and 
spending more extended time in open arms of the EPM 
apparatus. Moreover, mobility time in the TST task 
was longer than in the RS group. The combination of 
buspirone with silymarin (200 mg/kg) more potentiated 
their protective effect, suggesting the therapeutic 
potential against RS-induced, anxiety, and depression-
like behaviors. In addition, serum corticosterone levels 
remarkably decreased in combination treatment and 
buspirone alone in RS-subjected mice. These findings 
indicated the anxiolytic and anti-depressant effects of 
buspirone and a combination of silymarin and buspirone. 
However, the co-administration of these two drugs was 
more effective than each drug alone.

As one of the standards and accepted methods of stress 
induction in rodents, RS is a widely applied stress model. 
This method can be utilized inexpensively and quickly 
and does not harm the animal physically.41 It also causes 
biochemical, neurophysiological, and behavioral changes 
in laboratory animals, and the results in the clinic can be 
generalized to human cases.42 Furthermore, the findings 
revealed that exposure to acute or chronic RS causes 
anxiety and depression in rodents.43 In the current study, 
movement restriction due to RS (for 14 consecutive days 
and 2 hours per day) could lead to anxiety and depression. 
This finding is in line with those of some studies, indicating 
that inducing RS not only causes depressive and anxiety 
behaviors but can also be associated with complications 
such as cognitive impairment and appetite.42,44

Buspirone is administrated to treat anxiety and 

Figure 1. Effects of Co-administration of Buspirone and Silymarin on (A) the %OAE, (B) %OAT in the EPM, and (C) Immobility Time in TST. Note. Data are 
presented as the mean ± SEM (n = 12 in each group). ***P < 0.001 in comparison with control group; #P < 0.05, ##P < 0.01, and ###P < 0.001 in comparison with the 
NS group. SEM: Standard error of the mean; Bus: Buspirone, Sil: Silymarin, %OAT: Time spent in open arms; %OAE: Open arm entries, EPM: Elevated plus, TST: 
Tail suspension test, NS: Normal saline
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Figure 2. The Effect of Co-administration of Silymarin and Buspirone on 
Serum Corticosterone Levels. Note. Data are presented as the mean ± SEM 
(n = 12 in each group). *** P < 0.001in comparison with the control group; 
##P < 0.01 and ###P < 0.001 in comparison with the NS + RS group. Bus: 
Buspirone, Sil: Silymarin, RS: Restraint Stress, NS: Normal Saline

depression-like symptoms by the partial serotonin 
receptor agonist mechanism. It affects serotonin receptors 
located in the CA1 region of the hippocampus and cerebral 
cortex.22 Animal models have shown that low doses (1 mg/
kg) of this drug activate pre-synaptic autoreceptors, and 
high doses (2.0 mg/kg) stimulate post-synaptic receptors, 
thus the effects of this drug depend on the dose. It has also 
been indicated that high doses increase locomotion.45,46 
Some studies demonstrated that the imbalance of the 
serotonergic system increases anxiety; accordingly, for 
the treatment of anxiety symptoms, anxiolytic drugs have 
been used that act on the serotonin system by inhibiting 
serotonin reuptake and serotonin 1A receptor agonist 
(5-HT1AR).32,47 Studies have documented that mice 
exposed to RS increased their fear. Hence, NS mice treated 
with serotonergic drugs moved more time in the open 
arm, and mobility time increased on the TST, whereas it 
was not observed in the NS pretreatment group.48

Several lines of studies in animal models have proven 
that silymarin (100 and 200 mg/kg) has antidepressant 
and neuroprotection activity. Moreover, it can pass 
through blood-brain barrier and affect serotonin (5-
HT), dopamine, and norepinephrine receptors in the 
brain, increase the level of these hormones in the blood, 
and lessen behavioral and biochemical in ischemic rat 
models.32,49 Thakare et al, in an in vivo study on acute 
restrained stress mice, demonstrated that after treatment 
with silymarin 100 and 200 mg/kg, mobility time in forced 
swimming test increased, and it had an antidepressant 
effect.35 

The HPA axis is activated as one of the most critical 
neuroendocrine systems in response to stressors, leading 
to the release of GCs from the adrenal glands, including 
cortisol in humans and corticosterone in rodents.50 
Disturbances in this axis can cause disruptions in 
synaptic plasticity and lead to depression by exacerbating 
neuronal damage.51 Previous studies have pointed out 
that stressful events, especially chronic RS, can cause 
the dysregulation of this axis by disrupting the harmful 
feedback activity. Hence, it leads to the overstimulation of 
the axis and causes an unusual increase in serum cortisol 
and corticosterone in humans and rodents, respectively, 

leading to brain damage.52,53 The three regions of the brain 
such as the hippocampus, frontal cortex, and amygdala 
are susceptible to long-term exposure to stress, causing 
increased GC expression in these structures and leading 
to physiological changes and disorders.54,55 In line with 
previous studies,32,35,56 our result represented that exposure 
to chronic RS increased serum corticosterone levels 
in mice compared to the control group. Moreover, co-
administration of buspirone and silymarin (200 mg/kg) 
and buspirone alone in RS-subjected mice significantly 
decreased corticosterone levels in the serum.

Conclusion
In general, the present findings indicated that the co-
administration of silymarin and buspirone exerts a 
potentiating effect against biochemical and behavioral 
alterations induced by chronic RS stress. Nevertheless, 
more molecular and behavioral studies should be 
performed to reveal their exact antianxiety and 
antidepressant mechanisms. 
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