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Introduction
Stimulator of interferon gene (STING), sometimes referred 
to as a stimulator of interferon (IFN) genes, MITA, MPYS, 
or ERIS, is widely distributed in nonlymphoid tissues, 
including the lung and heart, and is found in hematopoietic 
cells in peripheral lymphoid organs. STING is localized 
to the mitochondria-associated endoplasmic reticulum 
membrane and the endoplasmic reticulum.1 In reaction 
to foreign DNA originating from several intracellular 
infections, STING combines with IFN regulatory factor 3 
(IRF3) to start the synthesis of type I IFN.2,3 The onset of 
systemic lupus erythematosus has been linked to STING 
4–7. Following its purification and identification, cGAS has 
emerged as a prominent subject of study in the area of 
immunology, focusing on its structure and function. The 
cGAS protein is a member of the nucleotidyltransferase 
(NTase) superfamily, capable of detecting nucleic acids 
that are either released from external sources or produced 
internally.7-9 cGAS is composed of two primary structural 
domains, including an N-terminal domain with a positive 
charge that helps stabilize the dimer form of cGAS and 

a C-terminal domain with a globular structure. The 
C-terminal domain has two subdomains, including 
an NTase core, which is responsible for the enzymatic 
activity of cGAS, and a Mab21 domain, which is involved 
in binding to DNA.10-13 The Mab21 domain consists of two 
distinct lobes separated by a deep gap, which is necessary 
for the binding of nucleotides.14,15 The C-terminal lobe is a 
bundle of helices with a conserved zinc (Zn) thumb, while 
the N-terminal lobe is made up of β-sheets encircled by 
α-helices. The side chains of the active sites of cGAS are 
oriented toward the groove dividing the N and C lobes, 
and side chains are located on the central β-sheet of the 
NTase domain.16-19 Porcine cGAS has decreased catalytic 
activity when Glu200 and Asp202 are substituted with Gln 
and Asn, respectively.19-21 In human cGAS, substituting 
alanine for Gly212, Ser213, Glu225, Asp227, and Asp319 
also results in a decrease in catalytic activity.8 Previous 
research has shown the critical function that the conserved 
Zn thumb plays in cGAS dimerization and DNA binding 
processes.22-24 When the cGAS C-terminal domain binds 
to Zn, the H(X5)CC(X6)C Zn-binding motif, which is 
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Abstract
Natural immunity, the first defensive mechanism of the body against pathogen invasion, relies 
on nucleic acid recognition systems to detect the presence of pathogens. The cyclic GMP–
AMP synthase-stimulator of interferon (IFN) gene (cGAS-STING) signaling pathway is a crucial 
pattern recognition and effector pathway in the innate immune system. Its primary function 
is to detect DNA molecules in the cytoplasm and initiate downstream signaling pathways, 
resulting in the production of type I IFNs and other inflammatory factors. STING, a pivotal 
transmembrane protein in the innate immune system, plays a vital role in the host’s ability 
to resist invasion by foreign pathogens. An increasing amount of evidence suggests that the 
cGAS-STING pathway induces apoptosis in addition to stimulating inflammatory responses 
and producing type I IFN. Many previous studies have so far focused on investigating the 
mechanisms of apoptosis induced by the cGAS-STING pathway as well as the effects that 
ensue. The relationship between the cGAS-STING pathway and apoptosis has been extensively 
examined in this article. Through endoplasmic reticulum stress, nucleotide oligomerization 
domain-like receptor protein-3, nuclear factor-κB (NF-κB), IFN regulatory factor 3, and IFN 
signals, the cGAS-STING pathway may cause apoptosis. Conversely, apoptosis could affect 
how the cGAS-STING pathway is regulated. It may release mitochondrial DNA to boost the 
process or activate caspases to suppress it. The cGAS-STING pathway plays a critical role in 
controlling innate immune responses, fighting off infections, and stopping the growth of tumors 
by stopping apoptosis.
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inserted between residues 389 and 405, triggers a structural 
rearrangement. The existence of charged loops that alter 
the required gap for DNA binding is made possible by the 
Zn ligand sites.25 This narrative review aims to provide a 
succinct overview of the current procedures and results 
related to cyclic GMP–AMP synthase-stimulator of IFN 
gene (cGAS-STING)-triggered apoptosis.

Cyclic Guanosine Monophosphate-Adenosine 
Monophosphate Synthase-Stimulator of Interferon Gene 
Pathway Relation With Nucleotide Oligomerization 
Domain-like Receptor Protein-3 in Apoptosis
Through the induction of caspase-1 activation and the 
production of proinflammatory cytokines interleukin 
(IL)-1β/IL-18 in response to microbial infection and 
cellular damage, NLRP3 performs a critical function 
in the innate immune system 26. In addition to causing 
transcription factors IRF3 and nuclear factor-κB (NF-
κB) to become active, activating STING also activates 
the NLRP3 inflammasome.27 It is proposed that the 
interaction between STING and NLRP3 is the mechanism 
through which the cGAS-STING pathway activates the 
NLRP3 inflammasome.28 Through NLRP3 localization 
and NLRP3 polyubiquitination removal, STING interacts 
with NLRP3 to facilitate inflammasome activation.28

Furthermore, it was shown that STING may lessen 
NLRP3’s K48- and K63-linked polyubiquitination after 
a herpes simplex virus-1 infection or stimulation by 
cytosolic DNA. The PYRIN domain (PYD), NACHT-
associated domain (NAD), and leucine-rich repeat (LRR) 
domain make up the NLRP3 protein. The results of the 
tests demonstrated that the interaction with STING 
included the NAD and LRR domains. Five putative 
transmembrane segments make up STING. TM5, 
which is composed of 151–160 amino acids in humans, 
interacts with NLRP3. Conversely, TM2, which spans 
amino acids 41–81 in humans, has a role in the NLRP3 
inflammasome’s formation and activation.29 Moreover, 
an independent study has revealed that the cGAS-
STING pathway may damage lysosomes and cause 
potassium ions to be released, which might activate the 
NLRP3 inflammasome.29 When BLaER1 monocytes were 
stimulated with DNA, the amount of potassium (K + ) 
inside the cells decreased significantly, and this reduction 
was dependent on the cGAS-STING pathway.30

Additionally, an increasing number of studies have 
reported that NLRP3 inflammasome activation contributes 
to several types of cell death, including apoptosis, in 
addition to pyroptosis.30 The direct enzyme caspase-8 
converts IL-1β when the NLRP3 inflammasome is 
activated. NLRP3-apoptosis-associated speck-like protein 
inflammasomes attract caspase-8 when they are active, 
which helps murine bone marrow-derived dendritic cells 
process IL-1β. This procedure takes place regardless of the 
existence of caspase-1 and caspase-11.31 If the pyroptotic 
process is inhibited but the inflammasome is activated, 
caspase-8 may act as a substitute mechanism and cause 

apoptosis.32 NLRP3 inflammasomes directly exploit 
caspase-8 as a substantial IL-1β-converting protease and 
as a pro-apoptotic initiator when caspase-1 is absent.32 
Thus, it may be concluded that by activating the NLRP3 
pathway, the cGAS-STING pathway can cause apoptosis 
(Figure 1). A mouse investigation revealed that STING 
activated NLRP3, which, in turn, caused inflammation 
and apoptosis in the heart. Cardiomyocyte apoptosis 
and NLRP3-mediated inflammation were successfully 
inhibited by STING silencing.33

Cyclic Guanosine Monophosphate-Adenosine 
Monophosphate Synthase-Stimulator of Interferon 
Gene Pathway Relation With NF-κB in Apoptosis
The production of cytokines is regulated by NF-κB, a 
critical regulator of inflammatory immune responses.34 
Research has shown that the cGAS-STING pathway might 
trigger NF-κB, which would then cause the inflammatory 
response to start. This mechanism may also help the 
immune system fight off infections.35,36 The transcription 
of genes that encode inflammatory cytokines may be 
regulated by the cGAS-STING pathway via the induction 
of NF-κB-dependent signaling transduction. TBK1 and 
its homolog IκB kinase epsilon (IKKε) trigger the IKK 
complex, which, in turn, activates the transcription 
factor NF-κB after being stimulated by STING.37 STING 
activates IKK during endoplasmic reticulum translocation 
and is phosphorylated at Ser374 in humans (and Ser373 in 
mice). This process causes IκB to become phosphorylated, 
which is then followed by the ubiquitin-proteasome 
system destroying it and releasing free NF-κB.38 Moreover, 
STING causes the Golgi apparatus’s IKK complex to 
become active, causing the unbound NF-κB to go into the 
nucleus.39

Although NF-κB is well known for its anti-apoptotic 
function, which prevents cell death, it is also often observed 
that pro-apoptotic effects, which cause cell death, may 
result from NF-κB activation.40 Through the activation 
of several anti-apoptotic genes, NF-κB negatively affects 
apoptosis. Apoptosis occurs if NF-κB activity is inhibited.41 
Nonetheless, NF-κB activation may enhance the beginning 
of programmed cell death in human osteosarcoma cells by 
upregulating the expression of the protein known as Bcl-
2-binding component 3, or p53-upregulated modulator of 
apoptosis.42 Additionally, studies have demonstrated that 
NF-κB may cause apoptosis by triggering the synthesis 
of genes that promote apoptosis.43 STING can initiate the 
NF-κB signaling pathway. Conversely, inhibiting NF-κB 
signaling by the use of siRNA p65 reduces the effects of 
STING-induced apoptosis and senescence improving 
the imbalance in STING-induced extracellular matrix 
metabolism.44 Further, ultraviolet B (UVB) may trigger 
programmed cell death (apoptosis) in human keratinocyte 
(HaCaT) cells via activating the cGAS-STING pathway. 
The administration of BAY, a substance that inhibits the 
NF-κB pathway, can prevent UVB-induced cell death. 
Therefore, the NF-κB signal plays a role in the induction 
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of apoptosis via the cGAS-STING pathway (Figure 1).

Cyclic Guanosine Monophosphate-Adenosine 
Monophosphate Synthase-Stimulator of Interferon 
Gene Pathway Relation With Interferon-I in Apoptosis
The cGAS-STING signaling pathway detects viral 
infections and triggers the synthesis of type 1 IFNs to 
counteract the invading pathogens. Studies have revealed 
that type 1 IFNs may trigger apoptosis in different cell types 
using both intrinsic and extrinsic pathways.45-47 IFN-β has 
been shown to trigger apoptosis in neuroblastoma cells by 
inhibiting the phosphoinositide 3-kinase/protein kinase 
B (PI3K/AKT) signaling pathway, releasing cytochrome 
c, and activating procaspase 9 via the intrinsic route.48 

Nevertheless, a separate investigation demonstrated 
that the initiation of programmed cell death (apoptosis) 
by IFN-β relies on the activation of caspase-8 via the 
extrinsic route.49-52 Furthermore, it was observed that the 
apoptosis triggered by IFN-β may be hindered by specific 
inhibitors that target caspase-8 but not caspase-9.53-55 
Likewise, several investigations have shown that IFN-I 
promotes apoptosis via the extrinsic signaling route. This 
mechanism also relies on the presence of the death ligand 
TRAIL in melanoma and breast cancer cells.56 Thus, the 
generation of IFN-I may be involved in the mechanism 
of apoptosis triggered by the cGAS-STING pathway 
(Figure 1).

IFN-I controls apoptosis through a process that involves 
many signaling pathways. Among these pathways, the Janus 
kinase/signal transducers and activators of transcription 
(JAK-STAT) and PI3K/AKT pathways are thought to 
play important roles.52 According to some theories, IFN-I 
might cause apoptosis by triggering the IFN-JAK-STAT 

pathway, which controls the Bcl-2 family of proteins.52 
After binding to IFN-α/β receptors, IFN-I phosphorylates 
and activates Tyk2 and JAK1, two JAK family members. 
These kinases then go on to phosphorylate STAT1. It was 
shown that STAT1 activation was involved in the control 
of apoptosis. This was accomplished by regulating the 
ERK1/2 and JNK pathways to inhibit the activity of Bcl-2 
and Bax, two Bcl-2 family members.57 In addition, IFN-1 
may cause apoptosis by blocking the PI3K/AKT signaling 
pathway. Serine/threonine protein kinases belonging to 
the PI3K family are the building blocks of the PI3K/AKT 
signaling pathway. It is essential for inhibiting apoptosis 
and promoting cell division.58

Cyclic Guanosine Monophosphate-Adenosine 
Monophosphate Synthase-Stimulator of Interferon 
Gene Pathway Relation With Phosphatidylinositol 
3-Kinase in Apoptosis
PI3K plays a crucial role in the growth and specialization of 
B lymphocytes. The class I PI3K is composed of two parts, 
namely, a catalytic subunit called p110 and a regulatory 
subunit called p85.59 The absence of p110δ in mice leads 
to a notable decrease in splenic marginal zone B cells 
and B1a cells.60,61 Mice lacking phosphatase and tensin 
homolog specifically in B cells have heightened PI3K 
signaling, along with augmented populations of marginal 
zone B cells and B1a cells.62-65 The lack of phosphatase 
and tensin homolog and the resulting elevation in PI-
3,4-P2 and PI-3,4,5-P3 may serve as a replacement for 
CD19 in enhancing PI3K activity.62 Another inositol 
phosphatase, Src homology 2 domain-containing inositol 
5′-phosphatase (SHIP), also demonstrates a similar 
function. Lyn catalyzes the phosphorylation of CD19, 

Figure 1. The Relationship of the cGAS-STING Pathway With Apoptosis. Note. cGAS-STING: Cyclic GMP–AMP synthase-stimulator of interferon gene
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which subsequently recruits PI3Ks. The PI3K/PIP3 
signaling pathway activates AKT signaling via AKT/
PDK-1 activation, leading to a decrease in apoptosis. 
This is achieved by phosphorylating Foxo-1/3, which 
promotes their export from the nucleus and subsequent 
destruction.65,66 PIP3 interacts with PDK1, leading to the 
phosphorylation of AKT. This phosphorylation, either 
directly or indirectly, activates the mammalian target 
of rapamycin complex 1 by involving tuberous sclerosis 
complex 1/tuberous sclerosis complex 1.67,68 STING has 
shown the ability to control the activity of the tyrosine 
phosphatase SHP.69 However, it is yet unknown if STING 
can also regulate SHIP during B-cell receptor activation.

Conclusion
Apoptosis could affect how the cGAS-STING pathway 
is regulated. It may release mitochondrial DNA to boost 
the process or activate caspases to suppress it. The cGAS-
STING pathway plays a critical role in controlling innate 
immune responses, fighting off infections, and stopping 
the growth of tumors by stopping apoptosis. 
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