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Introduction
Sleep is a vital physiological process, which is vital not only 
for restoring energy and supporting synaptic plasticity but 
also for maintaining metabolic, immune, and cognitive 
balance.1 Epidemiological studies consistently associate 
poor sleep quality, reduced slow-wave sleep (SWS), and 
fragmented sleep with a higher risk of neurodegenerative 
disorders, including Alzheimer’s disease (AD) and 
Parkinson’s disease (PD).2 The mechanisms behind 
this connection remained unclear for many years. 
Nonetheless, the recent discovery of the glymphatic 
system (GS), a glial-assisted waste clearance network in 
the brain, provides a compelling mechanistic pathway 
connecting sleep physiology to neural proteostasis and 
neurodegenerative risk.3

Proteostasis refers to the maintenance of proper 
protein synthesis, folding, trafficking, and degradation. 
This process is essential in neurons, which are long-lived 

and metabolically active. When proteostasis is disrupted, 
misfolded and aggregated proteins, such as amyloid-β 
(Aβ), tau, and α-synuclein, accumulate. These features are 
the hallmarks of a variety of neurodegenerative diseases.4 
The interaction between sleep, glymphatic clearance, and 
proteostasis creates an integrated network. This network 
may explain how chronic sleep dysfunction contributes 
to neurodegeneration.4 This review integrates current 
knowledge on (i) sleep architecture and its role in brain 
clearance, (ii) the regulatory mechanisms of the GS, and (iii) 
intracellular proteostasis pathways in the brain. It further 
examines (iv) evidence of the interplay among these three 
systems in neurodegenerative diseases and (v) therapeutic 
implications and future directions. By connecting these 
topics, this study aims to clarify how sleep physiology 
influences glymphatic and proteostatic processes, how 
their disruption can increase neurodegenerative risk, 
and where research and interventions might focus in the 
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Abstract
Sleep is essential for maintaining brain health, cognitive performance, and neurological function. 
Accordingly, increasing scientific attention has recently been directed toward understanding 
the physiological mechanisms through which sleep exerts its restorative effects. The discovery 
of the glymphatic system (GS) provides a new conceptual framework for understanding how 
the brain eliminates metabolic waste and neurotoxic aggregates. During sleep, GS facilitates 
the convective exchange of cerebrospinal and interstitial fluids in order to remove harmful 
byproducts. These processes are linked to proteostasis, the regulation of protein synthesis, folding, 
and degradation, ensuring cellular homeostasis and preventing the accumulation of misfolded 
proteins. The dysfunction of glymphatic flow or proteostasis significantly contributes to the 
onset and progression of neurodegenerative diseases. According to research findings, poor sleep 
quality and short sleep duration produce decreased glymphatic clearance of debris, contributing 
to protein aggregation and cellular die-off and injury. Conversely, restorative sleep impairs 
waste flushing while protecting neural function. The present review provides findings related 
to recent research about the interplay of sleep physiology, glymphatic flow, and proteostasis to 
simultaneously provide an understanding of these three interrelated processes in the context of 
risk of neurodegenerative disease. Moreover, it presents emerging treatment approaches, such 
as sleep optimization, pharmacological modulation of glymphatic flow, and enhancement of 
proteostasis pathways that may avoid age-related cognitive decline that ultimately plays a role 
in brain health across the lifespan.
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coming years.

Sleep Physiology and Brain Clearance
Sleep is conventionally divided into rapid eye movement 
(REM) and non-REM (NREM) stages, with NREM 
further categorized into N1, N2, and N3 (also termed 
SWS). SWS features high-amplitude delta waves, 
synchronous cortical activity, reduced neuronal firing 
and metabolic demand, and increased interstitial space 
volume.1 This state appears particularly conducive to 
brain clearance; studies indicate that the extracellular 
space (ECS) volume increases approximately 60% during 
SWS, thereby reducing resistance to interstitial fluid (ISF) 
flow.5 SWS is generally regarded as the most restorative 
phase of sleep and is closely linked to sleep quality and 
maintenance; nevertheless, its specific functions and 
their consequences for daytime functioning are not fully 
elucidated yet.6 Chronic sleep deficits are associated with 
impairments in cognition and memory, and current 
evidence demonstrates a link between reduced SWS and 
various clinical and psychiatric disorders. Enhancing 
sleep architecture by increasing SWS, regardless of 
changes in total sleep duration, may improve these related 
conditions. Continued research and the development of 
innovative pharmacological and non-pharmacological 
sleep therapies are warranted.7 According to multiple 
animal studies, the influx of cerebrospinal fluid (CSF) 
into the brain parenchyma and its exchange with 
ISF significantly increase during sleep or anesthesia 
compared to wakefulness. For example, tracer research 
on mice reported approximately a 2-fold higher clearance 
of Aβ during sleep.8 Recent human neuroimaging studies 
employing diffusion tensor imaging along perivascular 
spaces have shown that individuals with poor sleep 
quality exhibit lower ALPS indices, suggesting reduced 
glymphatic clearance capacity.9

Chronic sleep deprivation or fragmentation directly 
impairs these clearance processes. In animal models, 
even one night of sleep deprivation rapidly increases 
hippocampal Aβ deposition and slows tracer egress.10 
Similarly, human studies indicate that short sleep duration 
( < 6 h) or disrupted SWS correlates with elevated CSF Aβ/
tau and greater amyloid positron emission tomography. 
Mechanistically, wakefulness is associated with elevated 
norepinephrine levels, which constrict the ECS and 
suppress perivascular fluid movement, thereby reducing 
glymphatic flux.11 

Thus, high-quality sleep, particularly with robust 
SWS, appears to offer greater brain clearance potential 
via an enlarged ECS and enhanced CSF-ISF exchange. 
Conversely, sleep disruption leads to decreased clearance 
and increased risk for protein accumulation. Accordingly, 
a comprehensive exploration of the GS is essential.

Glymphatic System: Function and Regulators of 
Glymphatic Flow
The GS is a brain-specific fluid clearance network in 

which CSF enters along periarterial channels, exchanges 
with ISF via astrocyte-expressed aquaporin-4 (AQP4) 
water channels at the end feet, and exits along perivenous 
or meningeal lymphatic routes.12 Astrocytes are 
responsible for the formation of perivascular tunnels, 
which are instrumental in promoting convective fluid 
transport. Moreover, the polarized expression of AQP4 
on the end-feet of astrocytes is crucial for the efficacy 
of fluid exchange; any disruption of this polarization 
significantly impairs the clearance process.13 The GS is a 
waste-clearance system that uses perivascular tunnels to 
remove soluble proteins and metabolites from the CNS, 
facilitates the distribution of compounds throughout 
the brain, and primarily functions during sleep. In 
addition, it is involved in the removal of neurotoxic 
waste products, and its dysfunction may be associated 
with the pathogenesis of neurodegenerative diseases, 
cerebral trauma, and stroke.3 The GS exhibits a decline in 
function with aging. According to research, older adults 
show lower DTI-ALPS indices, reduced tracer influx, 
and increased perivascular space (PVS) dilation.14 These 
changes coincide with increased Aβ accumulation in the 
aging brain. Furthermore, pathological conditions (e.g., 
AD and PD) are linked to even greater impairments in 
glymphatic flow and changes in the distribution of AQP4 
channels.2

Several factors modulate glymphatic efficacy:
	• Sleep state: As noted, SWS enhances glymphatic flow. 

It has been demonstrated that glymphatic influx is 
associated with delta wave power and is the highest 
during deep NREM sleep. 15

	• Arterial pulsatility: The driving force for periarterial 
CSF influx is, in part, the pulsatile dilation of arteries. 
Aging and hypertension reduce arterial compliance 
and dampen pulsatile amplitude, leading to less 
glymphatic flow.16

	• Vascular and astrocytic integrity: Impaired clearance 
is also related to age-related stiffening of the 
vasculature, astrocytic reactivity, and loss of AQP4 
polarization. 17

	• Body posture: Interestingly, in rodent models, lateral 
asleep positioning increases glymphatic clearance vs. 
prone or supine positions. 18

Proteostasis in the Brain
Influence of Sleep on Proteostasis
Proteostasis is the maintenance of the proteome through 
coordinated regulation of protein synthesis, chaperone-
mediated folding, post-translational modifications, 
trafficking, and degradation via the ubiquitin-proteasome 
system and autophagy–lysosomal pathways.19 In post-
mitotic, long-lived neurons, robust proteostasis is 
essential for preventing the accumulation of misfolded 
or aggregated proteins and maintaining synaptic and 
metabolic functions.20 Recent findings suggest that sleep 
plays a supportive role in proteostatic mechanisms. For 
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instance, studies in animal models demonstrate that 
sleep enhances the expression of molecular chaperones 
and increases autophagic flux in brain tissue. In 
contrast, sleep deprivation reduces autophagy markers, 
causes the accumulation of ubiquitinated proteins, and 
increases endoplasmic reticulum stress. Overall, these 
perturbations may impair the degradation of Aβ, tau, 
α-synuclein, and other aggregation-prone proteins.21 
Ortiz-Vega et al found that sleep modulation plays a 
critical role in maintaining proteostasis and mitigating 
neurodegeneration in Drosophila models of tauopathy. 
Research also shows that sleep deprivation worsens 
neurodegenerative outcomes, whereas inducing sleep has 
a beneficial effect by enhancing autophagy and decreasing 
the accumulation of toxic tau proteins.22

Proteostasis and Aging
Proteostasis functions at the intracellular level, thereby 
facilitating the removal of misfolded proteins. However, 
the GS is responsible for the clearance of extracellular 
solutes and interstitial aggregates.23 Thus, efficient 
clearance requires the impairment of both systems; 
impairment of either may result in the buildup of 
toxic proteins. According to evidence, disruptions in 
glymphatic flow exacerbate proteostatic stress and vice 
versa.24

With advanced age, the proteostasis capacity reduces, as 
indicated by a decline in autophagy efficiency, a decrease 
in chaperone expression and proteasome activity, as well 
as an increase in oxidative damage.25 These modifications 
facilitate the aggregation of Aβ, tau, and α-synuclein, a 
phenomenon that is further exacerbated by compromised 
glymphatic clearance.26 The deficiency of AQP4 disrupts 
clearance mechanisms in AD models, leading to failures 
in proteostasis and dysfunction within neuronal circuits. 
Proteostasis acts as an essential intracellular defense 
mechanism against the aggregation of proteins, with 
its effectiveness augmented during sleep and adversely 
affected by aging and sleep disturbances. The interplay 
between proteostasis and glymphatic clearance suggests 
that the simultaneous dysfunction of these systems may 
signify a credible mechanistic pathway for the inception 
of neurodegenerative diseases.27

Interplay Between Sleep, Glymphatic Flow, and 
Neurodegeneration
In AD, hallmark pathologies include Aβ plaques and tau 
neurofibrillary tangles. Evidence shows that reductions in 
SWS and sleep fragmentation precede cognitive deficits 
and link with increased amyloid burden.28 Neuroimaging 
studies have associated a lower ALPS index (impaired 
glymphatic flow) with greater Aβ deposition and 
cognitive decline.29 In transgenic mouse models, the lack 
of AQP4 polarization results in a 25%–50% increase in Aβ 
accumulation despite unchanged production rates.30

Sleep disorders, especially REM-sleep behavior 
disorder, often appear early in prodromal PD. Recent 

studies have reported that patients with PD have reduced 
glymphatic function and greater PVS burden.31,32 
α-synuclein clearance may depend on glymphatic flow; 
AQP4 deficiency has been involved in the acceleration of 
α-synuclein aggregation and dopaminergic neuron loss, 
which are the main pathological features of PD.33 Similar 
mechanisms are proposed for other neurodegenerative 
conditions (e.g., Huntington’s disease and amyotrophic 
lateral sclerosis), where protein clearance and sleep 
disturbances are present.34

Therapeutic Implications 
Sleep Optimization Interventions
Enhancing the quality and quantity of sleep, particularly 
by increasing SWS, represents a primary avenue for 
intervention aimed at promoting cerebral clearance via 
the GS and augmenting protein homeostasis. Recent 
studies indicate that electrical or acoustic slow-oscillation 
stimulation during sleep can potentially amplify SWS 
power, subsequently leading to improved clearance of 
accumulated metabolites and proteins.35 For instance, 
research demonstrated that sensory stimulation (e.g., 
low-frequency acoustic) or transcranial stimulation 
during sleep may bolster CSF and ISF flow.36 Additionally, 
behavioral interventions have been proposed, including 
stabilizing sleep timing, reducing sleep fragmentation, 
managing sleep apnea, and optimizing sleep posture (e.g., 
sleeping laterally).37 It has been demonstrated that the 
lateral sleeping position is related to increased glymphatic 
efficiency compared to the supine (on the back) or prone 
(on the stomach) positions.38

Targeting Glymphatic Function Directly
Beyond optimizing sleep, several interventions are being 
explored to directly enhance GS function: 
1.	 Modulation of AQP4 channels: Preclinical studies 

have revealed that decreased AQP4 expression or the 
loss of its polarity on astrocytic endfeet is associated 
with diminished CSF/ISF flow and increased 
Aβ accumulation. 39 Therefore, pharmacological 
agents capable of regulating AQP4 or restoring its 
polarization are a key focus of research.40

2.	 Augmenting arterial pulsation/enhancing vascular 
function: Considering that arterial pulsation is 
considered one of the primary driving forces for 
fluid flow within the PVS, improving vascular health 
(e.g., through exercise, blood pressure reduction, and 
mitigation of atherosclerosis) is posited to enhance 
glymphatic performance. This approach directly 
addresses the mechanical propulsion required for 
efficient glymphatic clearance.41

3.	 Imaging and monitoring of glymphatic function: 
The use of imaging techniques (e.g., tracer-based 
magnetic resonance imaging, the ALPS index, and 
other advanced methodologies) is emerging for the 
early detection of impaired glymphatic function, 
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even before the onset of clinical symptoms. These 
diagnostic tools are vital for facilitating the design of 
future preventive interventions.42

Combined Interventions and Precision Approaches
Given the complex interplay among sleep, the GS, and 
proteostasis, a combination of multiple interventions 
that simultaneously improve sleep, augment clearance 
flow, and boost cellular protein-elimination capacity 
may yield the maximum effect. A comprehensive strategy 
for reducing the risk of neurodegeneration in high-
risk individuals might involve combining behavioral 
sleep therapy with regular exercise and an astrocyte/
AQP4-modulating pharmacological agent.43 Moreover, 
personalized strategies are critical; people should be 
selected based on specific risk indicators (e.g., age, 
APOE4 genotype, baseline ALPS function index, and 
sleep quality) and then assigned targeted interventions.44 
Eventually, the use of biomarkers, advanced imaging, 
and pre-intervention or post-intervention assessments 
can help quantify and validate the effectiveness of these 
combined approaches.

Conclusion
Evidence suggests that the interrelationship between 
sleep, the GS, and proteostasis is essential for sustaining 
nervous system homeostasis. Adequate and high-quality 
sleep, particularly the enhancement of SWS, optimizes 
glymphatic clearance, while vascular integrity and 
astrocytic AQP4 polarization modulate this process. 
In addition to intracellular proteostasis pathways, 
these mechanisms form an integrated defense against 
neurotoxic protein accumulation. However, impairments 
in any of these systems may shorten the onset and/or 
progression of neurodegenerative diseases. Consequently, 
multi-modal interventions, including the regulation of 
sleep behaviors to improve sleep and sleep physiology with 
exercise (i.e., regular aerobic training) to maintain vascular 
health and modulation of astrocyte reflection or AQP4 
with pharmacology, are potential protective strategies to 
target neurodegeneration. It is recommended that future 
research focus on longitudinal human studies, the use 
of standardized imaging biomarkers, and mechanistic 
studies to support clinical application, further validating 
the potential of the sleep-glymphatic-alterations in the 
proteostasis framework. This study, therefore, identified 
significant opportunities on the frontiers of the prevention 
and treatment of neurodegenerative disorders.
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